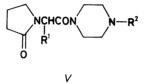
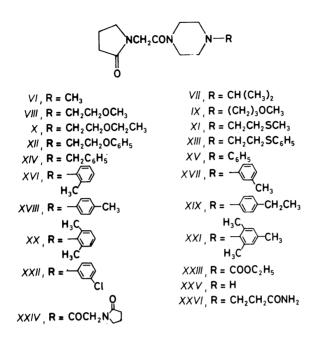
POTENTIAL NOOTROPIC AGENTS: SYNTHESIS OF A SERIES OF (2-OXO-1-PYRROLIDINYL)ACETIC ACID PIPERAZIDES


Vladimír VALENTA, Karel ŠINDELÁŘ, JIŘÍ HOLUBEK, MIROSLAV RYSKA, Ivan KREJČÍ, Antonín DLABAČ and Miroslav PROTIVA Research Institute for Pharmacy and Biochemistry, 130 60 Prague 3

> Received October 23, 1989 Accepted November 13, 1989

The title compounds VI-XXIII were prepared by heating ethyl (2-oxo-1-pyrrolidinyl)acetate (II) with a series of N-monosubstituted piperazines. The propionamides XXVI and XXX were obtained by reactions of the acid chlorides IV and XXXIII with 3-(1-piperazinyl)propionamide. Compounds VI (VÚFB-13 763) and VIII (VÚFB-14 745) proved more active than piracetam (I) by their antiamnesic effects in rats, by antagonizing the brain-damaging effects of cycloheximide in infantile rats, and by their potentiation of the effects of anticonvulsant agents.

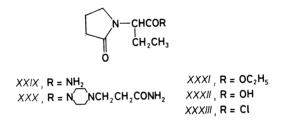
(2-Oxo-1-pyrrolidinyl)acetamide (I) (piracetam, UCB 6215, Nootropil^R) (refs¹⁻⁶) was characterized as a substance exerting a selective action on the cerebral cortex by activating, protecting and restoring the functions of nerve cells in distress. Its complex actions on the cortical cells include an increase of the energy reserve by stimulating the transformation of ADP into ATP, restoring to normal a decreased ATP level (e.g. after anoxia), and facilitating the physiological transfer of information between the two hemispheres via the corpus callosum. The result should be a favourable effect on patients with symptoms of psychoorganic senility such as failure of memory, reduced allertness, asthenia and psychomotor disorders. These properties were verified – at least partly – by clinical testing^{7,8}. In this way, piracetam (I) represents the first member and prototype of a new subgroup of psychopharmaceutical agents which was called "nootropic agents" (refs⁹⁻¹⁴) differing from the other psychotropic agents by the lack of sedative or stimulating effects and by no influence on behaviour.


The necessity of using relatively high doses of piracetam (I) prompted a broad research oriented towards the series of piracetam analogues with the hope to find more active substances with a similar biological profile. Our research team, too, started rather early (cf. ref.¹⁵) pharmaco-chemical research in this line which was concentrated on piperazine analogues of *I*, i.e. piperazides of the acid *III*. The delay of publishing our results was caused by the very slow proceeding of pharmacological testing. Now, our publication cannot be postponed anymore because in the meantime some patents appeared¹⁶⁻¹⁹ which deal with piperazides of the general formula *V*, where R¹ is H or a lower alkyl and R² is 4-methoxybenzyl, 4-hydroxybenzyl, allyl, cinnamyl, and 2-pyrimidinyl, which are claimed to have positive effects on supplying the brain with blood, on the "gasping reflex" in mice (acute brain ischemia induced by decapitation), in states of hypoxia and anoxia. The scope of these patents does not interfere with our own work.

The main part of this communication deals with description of the synthesis of piperazides VI - XXIII. They were prepared by the general method consisting of reactions of the ethyl ester II (refs^{2,20,21}) with a series of N-monosubstituted piperazines achieved by heating equimolecular mixtures of the components to 140-175°C for 5-14 h in the presence of catalytic amounts of sodium hydride or sodium methoxide. The following N-monosubstituted piperazines were used: 1-methylpiperazine, 1-(2-propyl)piperazine²², 1-(2-methoxyethyl)piperazine²³, 1-(3-methoxypropyl)piperazine²³, 1-(2-ethoxyethyl)piperazine²³, 1-(2-methylthioethyl)piperazine²³, 1-(2-phenoxyethyl)piperazine²³, 1-(2-phenylthioethyl)piperazine²³, 1-benzylpiperazine²⁴, 1-phenylpiperazine²⁵, 1-(2-tolyl)piperazine²⁶, 1-(3-tolyl)piperazine²⁶, 1-(4-tolyl)piperazine²⁶, 1-(4-ethylphenyl)piperazine²⁷, 1-(2,6-dimethylphenyl)piperazine²⁸, 1-(2,4,6-trimethylphenyl)piperazine²⁹, 1-(3-chlorophenyl)piperazine²⁶, and 1-(ethoxycarbonyl)piperazine. The crude bases VI - XXIII were mostly chromatographed on aluminium oxide and the homogeneous bases obtained – oily or crystalline – were mostly characterized by spectra and transformed to crystalline salts (maleates or hydrochlorides). Compounds VI-XXIII, prepared by the general method, are assembled in Table I with the usual experimental data. The spectra of these compounds are assembled in Table II.

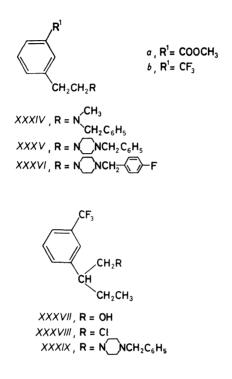
Compound VIII was also prepared by an alternative route which started by reaction of 1-(2-methoxyethyl)piperazine²³ with chloroacetyl chloride in chloroform at room temperature. The obtained XXVII was isolated as the crystalline hydro-

1614



chloride (characterized by the mass and IR spectra). The oily base XXVII was released with aqueous ammonia and reacted with 2-pyrrolidone in the presence of sodium hydride in boiling benzene; the crude base VIII was transformed to the hydrogen maleate and purified in this form; the yield was 54%. In one batch of preparation of X, in which a slight excess (17%) of 1-(2-ethoxyethyl)piperazine²³ was used, an inhomogeneous base was obtained which gave an inhomogeneous maleate. Its crystallization separated the less soluble component derived from the base $C_{10}H_{22}N_2O$ (mass spectrum) to which the structure of XXVIII was assigned (analysis of the bis(hydrogen maleate) is in agreement). The mode of formation of this compound is unclear; it seems to be the product of a strange transfer of ethyl from the oxygen atom in II to the nitrogen atom of 1-(2-ethoxyethyl)piperazine. The reaction of II (ref.²⁰) with piperazine (2:1) was carried out in order to prepare XXIV (it was mentioned in a patent³⁰ and reported to be useful in the treatment of cognitive disorders³¹). Under mild conditions (reaction in boiling toluene), the crystalline base XXIV was obtained in the yield of 37%. Processing of the mother liquor led to XXV which was isolated as hydrogen oxalate. Carrying out the reaction without solvent at 150-170°C led to 77% of XXIV. Reaction of (2-oxo-1-pyrrolidinyl)acetyl chloride (IV) (refs^{32,33}) with 3-(1-piperazinyl)propionamide³⁴ in boiling chloroform in the presence of triethylamine gave 38% of crystalline XXVI (hemihydrate) which was characterized by spectra and transformed to the crystalline hydrogen maleate.

In connection with etiracetam (XXIX), another experimental nootropic agent^{35,36},



the piperazide XXX was synthesized. Reaction of 2-pyrrolidone, sodium hydride, and ethyl 2-bromobutyrate in boiling benzene gave XXXI (mentioned in refs³⁷⁻³⁹), which was hydrolyzed to XXXII with boiling ethanolic potassium hydroxide. The intermediates XXXI and XXXII were characterized by spectra. The acid XXXII was transformed by treatment with thionyl chloride in benzene to XXXIII which was processed in crude state by treatment with 3-(1-piperazinyl)propionamide³⁴ in boiling chloroform in the presence of triethylamine; the oily XXX was obtained which afforded the crystalline hydrogen maleate.

Another nootropic prototype is the compound XXXIVa (PRL-8-53), a spasmolytic papaverine-like agent with learning-facilitating properties^{40,41}. It was reported to facilitate acquisition in rats and to improve retention in man^{42,43}. In this communication, the synthesis of two piperazine analogues of XXXIVa, i.e. of compounds XXXVa and XXXVIa, is being reported. 2-(3-Trifluoromethylphenyl)ethyl chloride⁴⁴ was reacted by heating to 130–140°C with 1-benzylpiperazine²⁴ and 1-(4-fluorobenzyl)piperazine⁴⁵, respectively. Oily XXXVb and XXXVIb were obtained, purified by distillation and characterized by crystalline salts. The dihydrochlorides of XXXVband XXXVIb were heated with sulfuric acid to 100°C and the resulting carboxylic acids were esterified "in situ" with methanol. The crude amino esters XXXVa and XXXVIa were transformed to crystalline hydrochlorides for pharmacological testing.

The last synthetic experiment described was discontinued in the stage of intermediate. The Grignard reagent, prepared from 1-bromo-3-(trifluoromethyl)benzene in tetrahydrofuran, was reacted with 1,2-epoxybutane. Distillation of the product gave 53% of a substance with the expected composition $C_{11}H_{13}F_3O$ (analysis) which was not homogeneous (¹H NMR spectrum), but evidently consisted mainly of XXXVII. Its reaction with thionyl chloride in boiling benzene in the presence of pyridine gave the inhomogeneous XXXVIII which was reacted in crude state with 1-benzylpiperazine²⁴ by heating to 150°C. The crude basic product was transformed to the crystalline dihydrochloride and purified by its crystallization. The oily base, released with aqueous ammonia, was used for recording the ¹H NMR spectrum which corroborated its structure XXXIX and proved the homogeneity.

Some of the compounds prepared were pharmacologically tested in the form of salts, described in the Experimental and in Table I. They were tested on the one hand in some specific tests in the nootropic line and using a general screening programme on the other. Acute toxicity in mice, LD_{50} in mg/kg. VI, 1 000 p.o. (507 i.v. in males, 405 i.v. in females); VII, > 1 000 p.o. (177 i.v.); VIII, 625 i.v.; X, 600 i.v.; XIII, 100 i.v.; XX, 250 p.o.; XXXVa, 30 i.v.; XXII, after the oral dose of 250 mg/kg no lethality, 500 mg/kg was lethal for 80% of the animals.

In the test of passive avoidance in rats VIII, XII, XIII, and XXIII in single doses of 0.02 mg/kg s.c. or 0.1 mg/kg p.o. significantly prolonged the duration of the avoidance response which was interpreted as a positive influence on the retention. The compounds were further evaluated in the test of amnesia in rats induced by the halothan anaesthesia (the influence on the passive avoidance responses was evaluated); VI (cf. ref.⁴⁶), XIV, and XXXVI in the s.c. doses of 100 mg/kg had significant antiamnesic effect, lower doses of 50 and 20 mg/kg s.c. had weaker but still significant effect (piracetam in the same doses was insignificantly effective); IX, the oral dose

of 0.1 mg/kg 30 min before the experiment was significantly active. A similar test in which amnesia was induced by the electroconvulsive shock (situation of passive avoidance): VIII in the oral dose of 0.1 mg/kg protected the animals from the amnesic action of the shock (the effect of piracetam in the same dose was insignificant). Effect against the brain damage by cycloheximide in infantile rats: VIII in daily doses of 1 mg/kg s.c. antagonized the cycloheximide effects (piracetam was practically without effect). The increased levels of dopamine and homovanillic acid in the rat brain striatum after cycloheximide were not influenced by VIII which, likewise, had no effect on the RNA and DNA content in cerebellum and in hippocampus. Influence on the duration of the gasping reflex in mice (acute ischemia induced by decapitation); oral doses of 100 mg/kg were administered 30 min before decapitation: VII, insignificant prolongation of the gasping reflex (to 105%); XXII, significant prolongation (to 127%). Potentiation of the anticonvulsant activity of valproate and diazepam in the test of electroshock in mice: VI in daily oral doses of 150 and 250 mg/kg significantly potentiated the effects of both anticonvulsant agents⁴⁷. Influence on the blood pressure of anaesthetized normotensive rats: X, the dose of 110 mg/kg i.v. brought about sharp and brief drops of the blood pressure; XXXVa, the i.v. dose of 6 mg/kg brought about prolonged drops of the blood pressure and bradycardia. Antitussic activity in the test of citric acid aerosol in guinea-pigs: Xin the oral dose of 300 mg/kg reduced the frequency of the cough attacks by 41%. In conclusion, compounds VI (VÚFB-13 763) and VIII VÚFB-14 745) proved more interesting than piracetam (I) by their antiamnestic effects in rats, by antagonizing the brain-dammaging effect of cycloheximide in infantile rats, and by their potentiation of the anticonvulsant effects of valproate and diazepam in mice.

EXPERIMENTAL

The melting points of analytical samples were determined in the Kofler block and they are not corrected; the samples were dried in vacuo of about 60 Pa at room temperature or at a suitably elevated temperature. UV spectra (in methanol, λ_{max} in nm (log ε)) were recorded with the Unicam SP 8000 spectrophotometer; IR spectra (mosty in NUJOL, ν in cm⁻¹) with Unicam SP 200G or Perkin-Elmer 298 spectrophotometers; ¹H NMR spectra (in CDCl₃ unless stated otherwise, δ in ppm, J in Hz) on a CW-NMR spectrometer TESLA BS 487C (80 MHz) or partly on a FT-NMR spectrometer TESLA BS 567A (100 MHz), and the mass spectra (m/z, fragments and/or %) on MCH 1320 and Varian MAT 44S (GC-MS) spectrometers. The homogeneity of the substances and composition of the mixtures were checked by thin-layer chromatography (TLC) on silica gel (Silufol). Preparative chromatographic separations were carried out on columns of neutral Al₂O₃ (activity II). The extracts were dried with MgSO₄ or K₂CO₃ and evaporated under reduced pressure on a rotary evaporator.

1-(2-Methylthioethyl)-4-((2-oxo-1-pyrrolidinyl)acetyl)piperazine (XI) (General Method)

A stirred mixture of 5.9 g II (refs^{2,20,21}), 5.3 g 1-(2-methylthioethyl)piperazine²³, and 0.1 g NaH was heated for 3 h to 100°C and for 5 h to 140°C. After cooling the inhomogeneous product was dissolved in benzene and the solution was chromatographed on 400 g Al₂O₃. Elution with

benzene afforded 5.8 g (64%) of the homogeneous oily XI which was used for recording the ¹H NMR spectrum. The neutralization with maleic acid in ethanol and addition of ether gave the hydrogen maleate, m.p. $138.5-140^{\circ}$ C (2-propanol). The spectrum and analysis are included in Tables I and II.

1-(Chloroacetyl)-4-(2-methoxyethyl)piperazine (XXVII)

A stirred solution of 7·2 g 1-(2-methoxyethyl)piperazine²³ in 20 ml chloroform was treated over 1 h at $5-6^{\circ}$ C with a solution of 6·9 g chloroacetyl chloride in 10 ml chloroform, added dropwise. The mixture was stirred for 2 h at room temperature, cooled to 2°C, the precipitated product was filtered, washed with ether, and recrystallized from a mixture of acetone and ethanol; 10·7 g (83%) of XXVII hydrochloride, m.p. 157–160°C. Mass spectrum: 220 (M⁺, C₉H₁₇ClN₂O₂, 2), 175 (C₇H₁₂ClN₂O, 100), 146 (18), 120 (17), 99 (36), 70 (24), 56 (40), 42 (41). IR spectrum: 1 119 (R-O-R'); 1 664 (NCOR); 2 440, 2 520, 2 560 (NH⁺). ¹H NMR spectrum (CD₃SOCD₃ at 80°C): 3·20-4·C0 m, 12 H (5 × CH₂N and CH₂O); 3·28 s, 3 H (OCH₃); 4·40 s, 2 H (ClCH₂. .CO). For C₉H₁₈Cl₂N₂O₂ (257·2) calculated: 42·03% C, 7·05% H, 10·90% N; found: 41·93% C, 7·13% H, 10·93% N.

The oily base XXVII was released from the hydrochloride with 20% NH₄OH and isolated by extraction with benzene. Processing of the extract gave the base which was immediately used for the further step.

1-(2-Methoxyethyl)-4-((2-oxo-1-pyrrolidinyl)acetyl)piperazine (VIII)

A stirred solution of 2.8 g 2-pyrrolidone in 15 ml benzene was treated with 0.8 g 80% NaH (suspension in mineral oil) and the mixture was stirred for 2 h at 55°C. After cooling it was treated under stirring over 1 h with a solution of 6.2 g XXVII in 20 ml benzene, added dropwise. The mixture was refluxed for 4 h, after cooling the precipitated NaCl was filtered off, and the filtrate was evaporated in vacuo. The residue (7.4 g) was dissolved in 15 ml ethanol and the solution was neutralized with a solution of 3.1 g maleic acid in 6 ml ethanol. Addition of 30 ml ether and standing overnight led to crystallization of 5.8 g (54%) of VIII hydrogen maleate, m.p. 113 to 116°C. It was found identical (TLC and mixed melting point with the product, obtained by the general method (cf. in Table I).

1-(2-Ethoxyethyl)-4-ethylpiperazine (XXVIII)

A mixture of 5.15 g II (refs^{2.20,21}), 5.55 g 1-(2-ethoxyethyl)piperazine²³, and 0.05 g NaH was stirred for 9 h at 145–155°C. After cooling the mixture was diluted with 70 ml chloroform, the solution was washed with water, and the basic product was extracted into 80 ml 3M-HCl. The aqueous layer was filtered at 60°C with active carbon, the filtrate was treated after cooling with NH₄OH and the bases were extracted with chloroform. Processing of the extract gave 4.3 g of inhomogeneous oil which was neutralized with 3.6 g maleic acid in 20 ml ethanol. Addition of ether led to crystallization of 5.3 g of inhomogeneous maleate melting at 140–163°C with decomposition. Crystallization or this product from 10 ml ethanol gave 1.7 g of a substance melting at 164–168.5°C. Further crystallization from ethanol gave the homogeneous produt melting at 174–175°C which was assigned to be XXVIII bis(hydrogen maleate). Mass spectrum: 186 (M⁺, C₁₀H₂₂N₂O), 171, 140 (C₈H₁₆N₂), 127 (C₇H₁₅N₂). For C₁₈H₃₀N₂O₉ (418.4) calculated: 51.66% C, 7.23% H, 6.70% N; found: 51.59% C, 7.39% H, 6.56% N.

1620

TABLE I

(2-Oxo-1-pyrrolidinyl)acetic acid piperazides

Compound	M.p., °C	Formula	Cal	culated/Fc	ound
Yield %	Solvent	(M.w.)	% C	% Н	% N
<i>VI-</i> HM ^a	138–142	C ₁₅ H ₂₃ N ₃ O ₆	52·77	6·79	12·31
82	2-propanol-ether	(341·4)	52·53	6·88	1 2 ·19
<i>VII-</i> HM ^a	169·5—170	C ₁₇ H ₂₇ N ₃ O ₆	55·27	7·37	11∙37
66	2-propanol	(369·4)	55·01	7·67	11∙24
<i>VIII-</i> HM ^a	113–116	C ₁₇ H ₂₇ N ₃ O ₇	52·97	7·06	10·90
67	ethanol-ether	(385·4)	52·72	7·14	10·70
VIII-P ^b	172–175 ^c	$C_{19}H_{26}N_6O_{10}$	45·78	5·26	16·86
	ethanol–ether	(498.5)	45·61	5·29	16·32
<i>IX</i> -HM ^a	116–119	C ₁₈ H ₂₉ N ₃ O ₇	54·12	7·32	10·52
48	2-propanol-ether	(399·4)	54·29	7·54	10·33
X-НМ ^а	146–147	C ₁₈ H ₂₉ N ₃ O ₇	54·12	7·32	10·52
50	2-propanol	(399·4)	54·22	7·49	10·53
XI-HM ^a	138·5—140	$C_{17}H_{27}N_{3}O_{6}S^{d}$	50·86	6·78	10·47
64 ^e	2-propanol	(401.5)	50·89	6·86	10·47
<i>XII-</i> НМ ^а	150–152	C ₂₂ H ₂₉ N ₃ O ₇	59·05	6·53	9·39
67	ethanol	(447·5)	58·76	6·82	9·10
XIII 75	99–100 cyclohexane- -light petroleum	C ₁₈ H ₂₅ N ₃ O ₂ S ^f (347·5)	62·22 62·47	7·25 7·40	12·09 12·18
XIII-HM ^a	159 – 160	$C_{22}H_{29}N_{3}O_{6}S^{g}$	57·00	6·31	9·07
	2-propanol	(463·5)	56·80	6·30	9·08
XIV-HCl	222 – 224	C ₁₇ H ₂₄ ClN ₃ O ₂ ^h	60·43	7·16	12·44
68	ethanol-ether	(337·3)	60·22	7·20	12·23
XV	153·5—154·5	C ₁₆ H ₂₁ N ₃ O ₂	66·87	7·37	14·62
63	ethanol	(287·4)	67·02	7·47	14·40
XV-HCl	173–175	$C_{16}H_{22}CIN_{3}O_{2}^{i}$	59·34	6·85	12·98
	ethanol	(323.8)	59·26	6·79	12·72
<i>XVI-</i> HCl	164 – 166	C ₁₇ H ₂₄ ClN ₃ O ₂ ^j	60·43	7·16	12·44
48	ethanol	(337·8)	60·69	7·39	12·22
XVII 70	105—107 benzene-light petroleum	C ₁₇ H ₂₃ N ₃ O ₂ (301·4)	67·75 67·64	7·69 7·97	13·94 14·09
XVII-HCI	166–167	C ₁₇ H ₂₄ ClN ₃ O ₂ ^k	60·43	7·16	12·44
	ethanol-ether	(337.8)	60·50	7·26	12·47

Potential Nootropic Agents

TABLE I

(Continued)

Compound	M.p., °C	Formula	Cale	culated/Fo	und
Yield %	Solvent	(M.w.)	% C	% н	% N
<i>XVIII</i> 60	152—155 benzene-light petroleum	C ₁₇ H ₂₃ N ₃ O ₂ (301·4)	67·75 68·05	7·69 7·88	13·94 13·87
XVIII-HCI ^I	162–164 ethanol-ether	$\begin{array}{r} {}^{C_{17}H_{24}ClN_{3}O_{2}{}^{m}}\\ + \ 0.5\ C_{2}H_{6}O\\ (360.9) \end{array}$	59·91 59·65	7·54 7·46	11·64 11·97
XIX 50	108—109·5 benzene-cyclohexane	C ₁₈ H ₂₅ N ₃ O ₂ (315·4)	68∙54 68∙25	7∙90 8∙24	13·32 13·54
XIX-HCI	171·5–172·5 2-propanol–ether	C ₁₈ H ₂₆ ClN ₃ O ₂ ⁿ (351·9)	61·44 61·52	7∙45 7∙64	11·94 11·91
XX 38	128—129 benzene-light petroleum	$\begin{array}{c} C_{18}H_{25}N_{3}O_{2}\\ (315\cdot4) \end{array}$	68·54 68·53	7·99 8·19	13·32 13·53
XXI 45	151–152 cyclohexane-benzene	C ₁₉ H ₂₇ N ₃ O ₂ (329·4)	69·27 68·99	8·26 8·35	12·76 12·80
XXII 30	114·5—115 benzene-light petroleum	C ₁₆ H ₂₀ ClN ₃ O ₂ ° (321·8)	59·71 59·59	6·26 6·54	13.00 13.09
XXII-HCI	138–140 ethanol	$C_{16}H_{21}Cl_2N_3O_2^{p}$ (358·3)	53·64 53·72	5·91 6·15	11·73 11·74
XXIII 13	99·5—100·5 benzene-light petroleum	$\begin{array}{c} C_{13}H_{21}N_{3}O_{4}\\ (283\cdot3) \end{array}$	55·11 55·11	7·47 7·69	14·83 14·94

^a Hydrogen maleate; ^b picrate; ^c with decomposition; ^d calculated: 7.99% S, found: 8.01% S; ^c see Experimental; ^f calculated: 9.23% S, found: 9.50% S; ^g calculated: 6.92% S, found: 7.00% S; ^h calculated: 10.49% Cl, found: 10.74% Cl; ⁱ calculated: 10.95% Cl, found: 10.65% Cl; ^j calculated: 10.50% Cl, found: 10.25% Cl; ^k calculated: 10.50% Cl, found: 10.35% Cl; ^l 2 : 1 solvate with ethanol; ^m calculated: 9.83% Cl, found: 10.03% Cl; ⁿ calculated: 10.08% Cl, found: 10.10% Cl; ^o calculated: 11.02% Cl, found: 10.86% Cl; ^p calculated: 19.79% Cl, found: 19.50% Cl.

TABLE II Spectra of (2-	Oxo-1-pyrro	TABLE II Spectra of (2-Oxo-1-pyrrolidinyl)acetic acid piperazides
Compound	Spectrum	Data
рИН- <i>11</i>	MS IR	225 (M ⁺ , C ₁₁ H ₁₉ N ₃ O ₂) 1 660 (CON); 1 676 (CON of lactam); 2 420 (NH ⁺)
ПЛ	IR ^b ¹ H NMR	1 635 (CON); 1 684 (CON of lactam); 2 760, 2 808 (N-CH ₂ , N-CH) 1·00 d, 6 H ($2 \times CH_3$ of 2-propyl, $J = 7$ ·0); 2·00 m, 2 H ($2 \times H$ ·4 of 2-pyrrolidone); 2·40 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine and CH ₂ CO of pyrrolidone); 2·70 m, 1 H (NCH); 3·40 m, 6 H CH ₂ N ⁴ CH ₂ of piperazine and CH ₂ N of pyrrolidone); 2·00 s, 2 H (NCH ₂ CO)
ШЛ	¹ H NMR	2·12 m, 2 H (2 \times H-4 of 2-pyrrolidone), 2·50 m, 8 H (3 \times CH ₂ around the N ¹ of piperazine and CH ₂ CO of pyrrolidone); 3·48 s, 3 H (OCH ₃); 3·52 m, 8 H (CH ₂ N ⁴ CH ₂ of piperazine, CH ₂ N of pyrrolidone and OCH ₂); 4·12 s, 2 H (NCH ₂ CO)
₽MH-IIIЛ	MS	269 (M ⁺ , C ₁₃ H ₂₃ N ₃ O ₃ , 0·1), 237, 224, 126, 99, 98 (100)
XI	¹ H NMR	1.75 m, 2 H (CH ₂ in position 2 of propane); 2·12 m, 2 H (2 \times H-4 of 2-pyrrolidone); 2·40 bm, 8 H (3 \times CH ₂ around the piperazine N ¹ and CH ₂ CO of pyrrolidone); 3·32 s, 3 H (OCH ₃); 3·60 m, 8 H (CH ₂ N ⁴ CH ₂ of piperazine, OCH ₂ , and CH ₂ N of pyrrolidone); 4·10 s, 2 H (NCH ₂ CO)
X	¹ H NMR	1·20 t, 3 H (CH ₃); 2·10 m, 2 H (2 \times H-4 of 2-pyrrolidone); 2·50 m, 8 H (3 \times CH ₂ around the piperazine N ¹ and CH ₂ CO of pyrrolidone); 3·59 m, 10 H (CH ₂ N ⁴ CH ₂ of piperazine, CH ₂ N of pyrrolidone and CH ₂ OCH ₂); 4·10 s, 2 H (NCH ₂ CO)
IX	¹ H NMR	2·10 m, 2 H (2 \times H-4 of 2-pyrrolidone); 2·12 s, 3 H (SCH ₃); 2·40 m, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ CO of pyrrolidone); 2·62 s, 4 H (SCH ₂ CH ₂ N); 3·50 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine and CH ₂ N of pyrrolidone); 4·08 s, 2 H (NCH ₂ CO)
IIIX	IR ¹ H NMR	700, 740, 750 (5 adjacent Ar–H); 1 480, 1 580 (Ar); 1 645, 1 664 (CON); 1 689 (CON of lactam) 2-10 m, 2 H (2 × H-4 of 2-pyrrolidone); 2-40 m, 6 H ($\rm CH_2 N^4 CH_2$ of piperazine and CH ₂ CO of pyrrolidone); 2-64 m, 2 H (CH ₂ N of thioethylamino); 3-00 m, 2 H (SCH ₂); 3-50 m, 6 H ($\rm CH_2 N^1 CH_2$ of piperazine and CH ₂ N of pyrrolidone); 4-05 s, 2 H (NCH ₂ CO); 7-00–7-40 m, 5 H ($\rm C_6 H_5$)

	<u></u>			ć), done);	, done););	, done););	,, done); H	done); , H	⁴ CH ₂ (18.4), (18.4), (18.4), (18.4), actam); actam), done); ; H perazine
710, 761 (5 adjacent Ar-H); 1 470 (Ar); 1 660 (CON); 1 692 (CON of lactam); 2 460, 2 530 (NH ⁷)	V); 1 673		[(CH ₂ N ⁴ CH ₂ 2 H]yl)	((CH ₂ N ⁴ CH ₂ 2 H ŋyl) 3 (26), 98 (18·4),	(CH ₂ N ⁴ CH ₂ 2 H iyl) 3 (26), 98 (18·4), rolidone); H ₂ N of pyrrolido	(CH ₂ N ⁴ CH ₂ 2 H yl) (26), 98 (18·4), rolidone); H ₂ N of pyrrolido CON of lactam);	(CH ₂ N ⁴ CH ₂ 2 H yl) 8 (26), 98 (18·4), rolidone); H ₂ N of pyrrolido CON of lactam); CON of lactam);	(CH ₂ N ⁴ CH ₂ 2 H yl) (26), 98 (18·4), rolidone); H ₂ N of pyrrolido CON of lactam); CON); 1 741 3·10 m, 4 H azine); 4·15 s, 2 H tolyl, J = 8·5)	(CCH ₂ N ⁴ CH ₂ 2 H yl) (26), 98 (18·4), rolidone); H ₂ N of pyrrolido CON of lactam); CON); 1 741 3·10 m, 4 H azine); 4·15 s, 2 H tolyl, J = 8·5) 'lactam);	$(CH_2N^4CH_2$ 2 H yl) (26), 98 (18.4), rolidone); H_2N of pyrrolido (1741) (20N); 1741 (20N); 1741 (2	$(CH_2N^4CH_2^2H_3)$ $2 H_3)$ (26), 98 (18.4), (26), 98 (18.4), rolidone); H_2N of pyrrolido $(1210 m, 4 H_3)$ (20N); 1 741 $(3\cdot10 m, 4 H_3)$ $(3\cdot10 m, 4 H_3)$ $(3\cdot10 m, 4 H_3)$ $(141), J = 8\cdot5)$ $(161), J = 8\cdot5)$ $(161), J = 8\cdot5)$ $(171), J = 8\cdot5$ $(171), J = 8\cdot5$
	(CON); 1 673		11, 4 II (CII ₂ IN CI -14 s, 2 H f phenyl)	2.10 m, $z = 1.2 \times 10^{-4}$ of z -pyromone), $z^{-4} = 1.0 \times 10^{-12}$ CO of pyrromone), $z^{-1} = 1.0 \times 10^{-4}$ CH ₂ N of pirromone), $z^{-1} = 1.0 \times 10^{-4}$ CH ₂ N of pirromone), $z^{-1} = 1.0 \times 10^{-4}$ CH ₂ N of pirromone), $z^{-1} = 1.0 \times 10^{-4}$ CH ₂ N CH	of piperazine); $3\cdot 60 \text{ m}$, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pyrrolidone); $4\cdot 14 \text{ s}$, 2 H (NCH ₂ CO); $6\cdot 90 \text{ m}$, 2 H (H-2 and H-6 of phenyl); $7\cdot 25 \text{ m}$, 3 H (H-3, H-4, and H-5 of phenyl) $301 \text{ (M}^+, \mathbb{C}_{17} \text{ H}_{23} \text{ N}_3 \text{ O}_2$), $301 (2\cdot 4)$, $203 (2)$, $159 (8\cdot 8)$, $146 (100)$, $133 (20\cdot 8)$, $126 (11\cdot 2)$, $118 (26)$, $98 (18\cdot 4)$, $91 (9\cdot 6)$, $70 (10\cdot 8)$, $56 (18)$ $2\cdot 10 \text{ m}$, 2 H (CH ₂ N ⁴ CH ₂ of piperazine); $2\cdot 30 \text{ s}$, $3 \text{ H} (\text{ArCH}_3)$; $2\cdot 45 \text{ m}$, $2 \text{ H} (\text{CH}_2\text{ CO of pyrrolidone})$; $4\cdot 18 \text{ s}$, $2 \text{ H} (\text{CH}_2\text{ CO})$; $6\cdot 60 - 7\cdot 30 \text{ m}$, $4 \text{ H} (\text{ArH})$	2.10 m, 2 m (2 × m ⁻⁴ of z-pyronuone), 2.41 m, 2 m (27 ₂ CO of pyronuone), 3.12 m, 4 m (27 ₂ N Crr ₂ of piperazine); 3.60 m, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pyrrolidone); 4.14 s, 2 H (NCH ₂ CO); 6.90 m, 2 H (H-2 and H-6 of phenyl); 7.25 m, 3 H (H-3, H-4, and H-5 of phenyl) 301 (M ⁺ , C ₁₇ H ₂₃ N ₃ O ₂), 301 (2.4), 203 (2), 159 (8·8), 146 (100), 133 (20·8), 126 (11·2), 118 (26), 98 (18·4), 91 (9·6), 70 (10·8), 56 (18) 32·10 m, 2 H (2 × H-4 of 2-pyrrolidone); 2·30 s, 3 H (ArCH ₃); 2·45 m, 2 H (CH ₂ CO of pyrrolidone); 3·12 bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3·60 bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pyrrolid 4·18 s, 2 H (NCH ₂ CO); 6·60-7·30 m, 4 H (ArH) 694, 788, 803, 885 (3 adjacent and solitary Ar-H); 1 510, 1 590 (Ar); 1 665 (CON); 1 688 (CON of lactam); 2 260 (NH ⁺)	210 III, 2 II (2 × II-4 of 2-pyrrolidone), 2-41 III, 2 II (CH ₂ CO of pyrrolidone), 4-14 s, 2 H (NCH ₂ CO); 6-90 m, 2 H (H-2 and H-6 of phenyl); 7-25 m, 3 H (H-3, H-4, and H-5 of phenyl) 301 (M ⁺ , C ₁₇ H ₂₃ N ₃ O ₂), 301 (2-4), 203 (2), 159 (8-8), 146 (100), 133 (20-8), 126 (11-2), 118 (26), 98 (18 91 (9-6), 70 (10-8), 56 (18) 2-10 m, 2 H ($2 \times$ H-4 of 2-pyrrolidone); 2-30 s, 3 H (ArCH ₃); 2-45 m, 2 H (CH ₂ CO of pyrrolidone); 3-12 bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pyrrolidone); 3-12 bm, 4 H (CH ₂ N ⁴ CCU); 6-60-7-30 m, 4 H (ArH) 694, 788, 803, 885 (3 adjacent and solitary Ar-H); 1 510, 1 590 (Ar); 1 665 (CON); 1 688 (CON of lact 2 260 (NH ⁺) 827 (2 adjacent Ar-H); 1 364 (Ar-N); 1 500, 1 519, 1 575, 1 615, 3 015, 3 055 (Ar); 1 700 (CON); 1 741 (CON of lactam); 2 800 (CH ₂ -N)	2.10 m, 2 m (2 × m ⁻⁴ of 2-pytrolutoue), 2 ⁻⁴ m, 2 m (Cn ₂ CO of pytrolutoue), 3 ⁻¹ B, (2 × m ⁻⁴ of 2-pytrolutoue), 3 ⁻¹ B, (H-3, H-4, and H-5 of phenyl) (NCH ₂ CO); 6 ⁻⁹ 0 m, 2 H (H-2 and H-6 of phenyl); 7 ⁻² S m, 3 H (H-3, H-4, and H-5 of phenyl) 301 (M ⁺ , C ₁₇ H ₂₃ N ₃ O ₂), 301 (2 ⁻⁴), 203 (2), 159 (8 ⁻⁸), 146 (100), 133 (20 ⁻⁸), 126 (11 ⁻²), 118 (26), 98 (18 ⁻⁴), 91 (9 ⁻⁶), 70 (10 ⁻⁸), 56 (18) 2 ⁻¹⁰ m, 2 H (2 × H-4 of 2-pytrolidone); 2 ⁻³⁰ s, 3 H (ArCH ₃); 2 ⁻⁴⁵ m, 2 H (CH ₂ CO of pytrolidone); 3 ⁻¹² bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3 ⁻⁶⁰ bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pytrolidone); 3 ⁻¹² bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3 ⁻⁶⁰ bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pytrolidone); 3 ⁻¹² bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3 ⁻⁶⁰ bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pytrolidone); 3 ⁻¹² bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3 ⁻⁶⁰ bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pytrolidone); 3 ⁻¹² bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3 ⁻⁶⁰ bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pytrolidone); 3 ⁻¹² bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3 ⁻⁶⁰ bm, 6 H (CH ₂ N ¹ bm, 2 H (CH ₂ N ¹); 1 665 (CON); 1 688 (CON of lactam); 2 ⁻²⁶⁰ (NH ⁺) 2 ⁻²⁶⁰ (NH ⁺) 2 ⁻²⁶⁰ (NH ⁺) 2 ⁻²⁵⁵ s, 3 H (ArCH ₃); 1 ⁻⁹⁰ - 2 ⁻⁶⁰ m, 4 H (CH ₂ CH ₂ in positions 3 and 4 of 2 ⁻ pytrolidone); 3 ⁻¹⁰ m, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3 ⁻¹⁰ m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine); 4 ⁻¹⁵ s, 2 H (NCH ₂ CO); 6 ⁻⁸¹ d, 2 H (H-2 and H-6 of 4 ⁻¹⁰)H, J = 8 ⁻⁵); 7 ⁻¹⁰ d, 2 H (H-3 and H-5 of 4 ⁻¹⁰)H, J = 8 ⁻⁵);	1. $4 \cdot 1.$ (Cr121A Cr121A Cr121A S 2 H f phenyl) 2), 118 (26), 98 (18 of pyrrolidone); ind CH2N of pyrr 688 (CON of lact 700 (CON); 1 741 700 (CON); 1 741 70	2.10 m, 2 m (24 × 10 + 2) yroutonois, 2 + 1 m, 2 m (27 × 10 + 2) yroutonois, 3 + 1 m (27 × 14 × 2 + 1) (NCH ₂ CO); 6 * 0 m, 5 H (H-3, N4) (2 + 0) (2	2-10 m, 2.r (2, rr+ 0, 2-py)romone), 2-41 m, 2.n (Cn ₂ C0 or pyrrolidone); 3-13 m, 47 n(Cn ₂ N Cn ₂ of piperazine); 3-60 m, 2 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pyrrolidone); 4-14, 3. d H-5 of phenyl) 301 (M ⁺ , C ₁ , H ₂ ₃ N ₃ O ₂), 301 (2-4), 203 (2), 139 (8-8), 146 (100), 133 (20-8), 126 (11-2), 118 (26), 98 (18-4) 301 (M ⁺ , C ₁ , H ₂ ₃ N ₃ O ₂), 301 (2-4), 203 (2), 159 (8-8), 146 (100), 133 (20-8), 126 (11-2), 118 (26), 98 (18-4) 31 (9-6), 70 (10-8), 56 (18) 2-10 m, 2 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pyrroli 4-18 s, 2 H (NCH ₂ CO); 6-60 - 7·30 m, 4 H (ArH) 694, 788, 803, 885 (3 adjacent and solitary Ar-H); 1 510, 1 590 (Ar); 1 665 (CON); 1 688 (CON of lactam 2 260 (NH ⁺) 2 260 (NH ⁺) 2 256 (NH ⁺) 2 255 s, 3 H (ArCH ₂) (1 900 - 2·60 m, 4 H (CH ₂ CH ₂ in positions 3 and 4 of 2-pyrrolidone); 3·10 m, 4 H 2 260 (N + 1) 2 255 s, 3 H (ArCH ₂) (1 900 - 2·60 m, 4 H (CH ₂ CH ₂ in positions 3 and 4 of 2-pyrrolidone); 3·10 m, 4 H 2 200 (CH ₂ -N) 2 2 55 s, 3 H (ArCH ₂) (1 900 - 2·60 m, 4 H (CH ₂ CH ₂ in positions 3 and 4 of 2-pyrrolidone); 3·10 m, 4 H 2 2 60 q, 2 H (RCH ₂) (1 900 - 2·60 m, 4 H (CH ₂ CH ₂ in positions 3 and 4 of 2-pyrrolidone); 3·10 m, 4 H 2 2 60 q, 2 H (RCH ₂) (1 900 - 2·60 m, 4 H (CH ₂ CH ₂ of piperazine); 4·15 s, 2 2 (CH ₂ N ⁴ CH ₂ of piperazine); 3·60 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine); 3·10 m, 4 H 2 2 60 q, 2 H (RCH ₂) (1 92, 1 514, 1 547, 3 010, 3 040 (Ar); 1 642 (CON); 1 684 (CON) of lactam); 3 80 (2 adjacent Ar-H), 1 492, 1 514, 1 547, 3 010, 3 040 (Ar); 1 642 (CON); 1 684 (CON) of lactam); 3 2 700 (CH ₂ -N) 3 2 1 2 1 (H ² and H ² of thylphenyl, <i>J</i> = 8·5); 3 2 2 4 (ArCH ₂) <i>J</i> = 7·0); 3 18 (Ar) 3 2 4 0 H, 2 H (ArH ₂) <i>L</i> = 7·0); 3 18 (Ar) 3 2 6 0 a, 2 H (ArCH ₂), <i>L</i> = 7·0); 3 18 (Ar) 3 2 2 4 0 H, 2 H (CH ₂ , <i>V</i> = 7·0); 3 18 (Ar) 3 2 3 6 adjacent Ar-H); 1 650 (CON); 1 658 (G, 2 H (H ² and H ² 6 of ethylphenyl, <i>J</i> = 8·5); 3 7 1 2 4 2 H (H (CH ₂), <i>L</i> = 7·0); 3 9·0 6 H (C 2 N ⁴ CH ₂), <i>L</i> = 7·0
695, 760 (5 adjacent Ar-H); 1 505, 1 575, 1 600, 3 000, 3 020, 3 040, 3 080 (Ar); 1 648 (CON); 1 673		2.10 m, 2 H (2 \times H-4 of 2-pyrolidone); 2.41 m, 2 H (CH ₂ CO of pyrrolidone); 3.15 m, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3.60 m, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of pyrrolidone); 4.14 s, 2 H (NCH ₂ CO); 6.90 m, 2 H (H-2 and H-6 of phenyl); 7.25 m, 3 H (H-3, H-4, and H-5 of phenyl)		126 (11·2), 118 (301 (M^+ , C_1 , H_2 , N_3 , O_2), 301 (2·4), 203 (2), 159 (8·8), 146 (100), 133 (20·8), 126 (11·2), 118 (26), 98 (91 (9·6), 70 (10·8), 56 (18)) 2·10 m, 2 H (2 × H-4 of 2-pyrrolidone); 2·30 s, 3 H (ArCH ₃); 2·45 m, 2 H (CH ₂ CO of pyrrolidone); 3·12 bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3·60 bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of py 4·18 s, 2 H (NCH ₂ CO); 6·60-7·30 m, 4 H (ArH)	126 (11-2), 118 (CH ₂ CO of pyrrc perazine and CH CON); 1 688 (CC	126 (11-2), 118 (CH ₂ CO of pyrrc perazine and CH CON); 1 688 (CC 5 (Ar); 1 700 (CC	126 (11-2), 118 (CH ₂ CO of pyrrc perazine and CH CON); 1 688 (CC 5 (Ar); 1 700 (CC ² Pyrrolidone); 3 ¹ CH ₂ of piperaz and H-5 of 4-to	301 (M ⁺ , C ₁ ,H ₂ ,N ₃ O ₂), 301 (2·4), 203 (2), 159 (8·8), 146 (100), 133 (20·8), 126 (11·2), 118 (26), 98 91 (9·6), 70 (10·8), 56 (18) 2·10 m, 2 H ($2 \times$ H-4 of 2-pyrrolidone); 2·30 s, 3 H (ArCH ₃); 2·45 m, 2 H (CH ₂ CO of pyrrolidone) 3·12 bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3·60 bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N of p 4·18 s, 2 H (NCH ₂ CO); 6·60-7·30 m, 4 H (ArH) 694, 788, 803, 885 (3 adjacent and solitary Ar-H); 1 510, 1 590 (Ar); 1 665 (CON); 1 688 (CON of la 2260 (NH ⁺) 827 (2 adjacent Ar-H); 1 364 (Ar-N); 1 500, 1 519, 1 575, 1 615, 3 015, 3 055 (Ar); 1 700 (CON); 1 7 (CON of lactam); 2 800 (CH ₂ -N) 2·25 s, 3 H (ArCH ₃); 1·90-2·60 m, 4 H (CH ₂ CH ₂ in positions 3 and 4 of 2-pyrrolidone); 3·10 m, 4 (CH ₂ N ⁴ CH ₂ of piperazine); 3·60 m, 6 H (CH ₂ N of pyrrolidone and CH ₂ N ¹ CH ₂ of piperazine); 4· (NCH ₂ CO); 6·81 d, 2 H (H-2 and H-6 of 4·tolyl, $J = 8\cdot5$); 7·10 d, 2 H (H-3 and H-5 of 4·tolyl, $J =$ 830 (2 adjacent Ar-H), 1 492, 1 514, 1 547, 3 010, 3 040 (Ar); 1 642 (CON); 1 684 (CON of lactam); 2 2790 (CH ₂ -N)	126 (11-2), 118 (CH ₂ CO of pyrrc perazine and CH ₂ CON); 1 688 (CC 5 (Ar); 1 700 (CC 2 -pyrrolidone); 3 1 CH ₂ of piperaz i and H-5 of 4-to 1 684 (CON of li 1 680 m, 6 H (CH ₂)	301 (M ⁺ , C ₁₇ H ₂₃ N ₉ O ₂), 301 (2-4), 203 (2), 159 (8-8), 146 (100), 133 (20-8), 126 (11-2), 118 (26), 91 (9-6), 70 (10-8), 56 (18) 2-10 m, 2 H (2 × H+4 of 2-pyrrolidone); 2-30 s, 3 H (ArCH ₃); 2-45 m, 2 H (CH ₂ CO of pyrrolido 3-12 bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 bm, 6 H (CH ₂ N ¹ CH ₂ of piperazine and CH ₂ N o 4-18 s, 2 H (NCH ₂ CO); 6-60-7-30 m, 4 H (ArH) 694, 788, 803, 885 (3 adjacent and solitary Ar-H); 1 510, 1 590 (Ar); 1 665 (CON); 1 688 (CON o 2 260 (NH ⁺) 827 (2 adjacent Ar-H); 1 364 (Ar-N); 1 500, 1 519, 1 575, 1 615, 3 015, 3 055 (Ar); 1 700 (CON); (CON of lactam); 2 800 (CH ₂ -N) 827 (2 adjacent Ar-H); 1 366 (M-N); 1 500, 1 519, 1 575, 1 615, 3 015, 3 055 (Ar); 1 700 (CON); (CON of lactam); 2 800 (CH ₂ -N) 827 (2 adjacent Ar-H); 1 492, 1 514, 1 547, 3 010, 3 040 (Ar); 1 642 (CON); 1 684 (CON of lactar CH ₂ N ⁴ CH ₂ of piperazine); 3-60 m, 4 H (CH ₂ N ⁴ L ₄ of pyrrolidone and CH ₂ N ⁴ CH ₂ of piperazine); (NCH ₂ CO); 6-81 d, 2 H (H-2 and H-6 of 4-toly!, $J = 8$ ·5); 7-10 d, 2 H (H-3 and H-5 of 4-toly!, J 830 (2 adjacent Ar-H), 1 492, 1 514, 1 547, 3 010, 3 040 (Ar); 1 642 (CON); 1 684 (CON of lactar 2 790 (CH ₂ -N) 12 11, 3 H (CH ₃ , $J = 7$ ·0); 3-18 bm, 4 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 m, 6 H (CH ₂ N ⁴ Cl and CH ₂ N of pyrrolidone); 4-18 s, 2 H (NCH ₂ CO); 6-86 d, 2 H (H-2 and H-6 of ethylphenyl, <i>J</i> - 7-12 d, 2 H (H-3 and H-5 of ethylphenyl, $J = 8$ ·5); 7-12 d, 2 H (H-3 and H-5 of ethylphenyl, $J = 8$ ·5) 7-12 d, 2 H (H-3 and H-5 of ethylphenyl, $J = 8$ ·5) 7-12 d, 2 H (H-2 and H-6 of ethylphenyl, $J = 8$ ·5) 7-12 d, 2 H (H-1 and H-5 of ethylphenyl, $J = 8$ ·5) 7-12 d, 2 H (ArCH ₂ , $M = 0$; 2-16 (CN) of lactam) 7-12 d, 2 H (H-1 and H-5 of ethylphenyl, $J = 8$ ·5) 7-12 d, 2 H (CH ₂ , $M = 0$; 2-97 rolidone); 2-90 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-60 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine); 3-6
0, 3 080 (Ar); 1 nvrrolidone): 3	wrrolidone): 3	4 of pyrrolidom 1-3, H-4, and H	133 (20·8), 126		5 m, 2 H (CH ₂ CH ₂ of piperazi	5 m, 2 H (CH ₂ CH ₂ of piperazi rr); 1 665 (CON	5 m, 2 H (CH ₂ ' CH ₂ of piperazi rr); 1 665 (CON 3 015, 3 055 (Ar	5 m, 2 H (CH ₂ CH ₂ of piperazi r); 1 665 (CON 3 015, 3 055 (Ar and 4 of 2-pyrr and CH ₂ N ¹ CH	5 m, 2 H (CH ₂) CH ₂ of piperazi (r); 1 665 (CON 3 015, 3 055 (Ar and 4 of 2-pyrr and CH ₂ N ¹ CH (, 2 H (H-3 and 2 (CON); 1 684	5 m, 2 H (CH ₂) CH ₂ of piperazi (r); 1 665 (CON 3 015, 3 055 (Ar and 4 of 2-pyrr and CH ₂ N ¹ CH (H-3 and (2 (CON); 1 684 e); 2-40 bt, 2 H rrazine); 3-60 m H-2 and H-6 ol	5 m, 2 H (CH ₂) CH ₂ of piperazi (r); 1 665 (CON (r); 1 665 (CON (r); 3 055 (Ar and 4 of 2-pyrr and 4 of 2-pyrr (r) 1 (H-3 and 2 (CON); 1 684 (2 (CON); 1 (684 (2 (CON); 1 (684)) (2 (CON); 1 (CON); 1 (CON)) (2 (CON); 1 (CON); 1 (CON)) (2 (CON)
220, 3 040, 3 08 I ₂ CO of pyrrol nd CH ₂ N of py n, 3 H (H-3, H·	I ₂ CO of pyrrol nd CH ₂ N of py n, 3 H (H-3, H		6 (100), 133 (20	(H ₃); 2·45 m, 2 CH ₂ N ¹ CH ₂ o		1 590 (Ar); 1 6	1 590 (Ar); 1 6 , 1 615, 3 015, :	1 590 (Ar); 1 6 , 1 615, 3 015, 3 sitions 3 and 4 olidone and CH); 7·10 d, 2 H (1 590 (Ar); 1 6 , 1 615, 3 015, ∶ sitions 3 and 4 sitione and Ct 5); 7-10 d, 2 H (Ar); 1 642 (CO	1 590 (Ar); 1 6 , 1 615, 3 015, : sitions 3 and 4 olidone and CF); 7·10 d, 2 H (Ar); 1 642 (CO Ar); 1 642 (CO rrrolidone); 2·4 rrolidone); 2·4	1 590 (Ar); 1 6 , 1 615, 3 015, : , 1 615, 3 015, : , 7 10 d, 2 H (); 7 10 d, 2 H (); 7 10 d, 2 H (); 7 10 d, 2 H (Ar); 1 642 (CO Ar); 1 642 (CO Ar); 1 642 (CO Ar); 2 4 (H-2 ar (H-2 ar (am) ArCH ₃); 2 40 ArCH ₃); 2 40 ArCH ₃); 2 6 f
, 3 000, 3 02		1, 2 H (CH ₂) berazine and yl); 7·25 m,	9 (8·8), 146	3 H (ArCH bm, 6 H (C	(H	H) H); 1 510, 1	H) H); 1 510, 1 519, 1 575, 1	H) H); 1 510, 1 519, 1 575, 1 M ₂ in posit A of pyrroli	H) H); 1 510, 1 519, 1 575, 1 S19, 1 575, 1 N of pyrroli A, J = 8·5); [0, 3 040 (A)	H) H); 1 510, 1 519, 1 575, 1 519, 1 575, 1 2H ₂ in posit N, $J = 8 \cdot 5$; 10, 3 040 (Aı 10, 3 040 (Aı H ₂ N ¹ CH ₂ CO); 6 · 86 d	4-18 s, 2 H (NCH ₂ CO); 6-60–7-30 m, 4 H (ArH) 694, 788, 803, 885 (3 adjacent and solitary Ar-H); 1 510, 1 59 2 260 (NH ⁺) 2 260 (NH ⁺) 2 260 (NH ⁺) 2 25 s, 3 H (ArCH ₃); 1-90–2-60 m, 4 H (CH ₂ CH ₂ in position (CD ₂ o ⁴ CH ₂ of piperazine); 3-60 m, 6 H (CH ₂ N of pyrrolide (NCH ₂ CO); 6-81 d, 2 H (H-2 and H-6 of 4-tolyl, $J = 8\cdot5$); 7- 830 (2 adjacent Ar-H), 1 492, 1 514, 1 547, 3 010, 3 040 (Ar); 2 790 (CH ₂ -N) 1 2 2 1, 3 H (CH ₃ , $J = 7\cdot0$); 3-18 bm, 4 H (CH ₂ N ¹ CH ₂ of and CH ₂ N of pyrrolidone); 4-18 s, 2 H (NCH ₂ CO); 6-86 d, 2 7 7 2 0 (2 H ₂ -N) 1 2 1 4, 2 H (H-3 and H-5 of ethylphenyl, $J = 8\cdot5$) 7 7 12 d, 2 H (H-3 and H-5 of ethylphenyl, $J = 8\cdot5$) 7 7 2 4 2 H (H-3 and H-5 of ethylphenyl, $J = 8\cdot5$) 7 7 2 0 adjacent Ar-H); 1 650 (CON); 1 675 (CON of lactam) 7 8 2 (3 adjacent Ar-H); 1 650 (CON); 1 675 (CON of lactam) 7 8 2 (3 adjacent Ar-H); 1 650 (CON); 1 675 (CON of lactam) 7 9 08 bm, 4 H (CH ₂ N ¹ CH ₂ of piperazine); 3-60 m, 6 H (CH ₂ ¹ Pyrrolidone); 4-15 s, 2 H (NCH ₂ CO); 6-95 s, 3 H (ArH)
	575, 1 600,	e); 2.41 m , H_2 of pipe 6 of pheny	.03 (2), 159	e); 2·30 s, ine); 3·60 t	$4\cdot 18$ s, 2 H (NCH ₂ CO); $6\cdot 60 - 7\cdot 30$ m, 4 H (ArH)	, 4 H (ArH itary Ar-H	, 4 H (ArH itary Ar-H 1 500, 1 5	, 4 H (ArH itary Ar-H itary 1 500, 1 5 H (CH ₂ C) 5 H (CH ₂ N 6 of 4-tolyl	, 4 H (ArH itary Ar-H itary Ar-B , 1 500, 1 5 H (CH ₂ N 6 of 4-tolyl I 547, 3 010	4-18 s, 2 H (NCH ₂ CO); 6·60 -7 ·30 m, 4 H (ArH) 594, 788, 803, 885 (3 adjacent and solitary Ar-H); 2 260 (NH ⁺) 2 260 (NH ⁺) 827 (2 adjacent Ar-H); 1 364 (Ar-N); 1 500, 1 519 (CON of lactam); 2 800 (CH ₂ -N) 2 -25 s, 3 H (ArCH ₃); 1·90 -2 ·60 m, 4 H (CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CO) (CH ₂ N ⁴ CH ₂ of piperazine); 3·60 m, 6 H (CH ₂ N (NCH ₂ CO); 6·81 d, 2 H (H-2 and H-6 of 4-tolyl), 830 (2 adjacent Ar-H), 1 492, 1 514, 1 547, 3 010, 2 790 (CH ₂ -N) 1·21 t, 3 H (CH ₂ , $J = 7$ ·0); 2·12 m, 2 H (2 × H-4 2·60 q, 2 H (ArCH ₂ , $J = 7$ ·0); 3·18 bm, 4 H (CH ₂ and CH ₂ N of pyrrolidone); 4·18 s, 2 H (NCH ₂ CC	4-18 s, 2 H (NCH ₂ CO); 6·60 $-7\cdot$ 30 m, 4 H (ArH) 694, 788, 803, 885 (3 adjacent and solitary Ar-H); 1 510 2 260 (NH ⁺) 2 260 (NH ⁺) 2 260 (NH ⁺) 827 (2 adjacent Ar-H); 1 364 (Ar-N); 1 500, 1 519, 1 57 (CON of lactam); 2 800 (CH ₂ -N) 2 -25 s, 3 H (ArCH ₃); 1·90 $-2\cdot$ 60 m, 4 H (CH ₂ CH ₂ in p (CH ₂ N ⁴ CH ₂ of piperazine); 3·60 m, 6 H (CH ₂ N of pyr (CH ₂ N ⁴ CC ₁₂) of piperazine); 3·60 m, 6 H (CH ₂ N 0 f pyr (NCH ₂ CO); 6·81 d, 2 H (H-2 and H-6 of 4-tolyl, $J = 8$ 830 (2 adjacent Ar-H), 1 492, 1 514, 1 547, 3 010, 3 040 2 790 (CH ₂ -N) 1·21 t, 3 H (CH ₃ , $J = 7\cdot$ 0); 3·18 bm, 4 H (CH ₂ N ¹ CF and CH ₂ N of pyrrolidone); 4·18 s, 2 H (NCH ₂ CO); 6·8 7·12 d, 2 H (H-3 and H-5 of ethylphenyl, $J = 8\cdot$ 5) 7·12 d, 2 H (H-3 and H-5 of ethylphenyl, $J = 8\cdot$ 5) 7·12 d, 2 H (CH ₂ N ¹ CH ₂ of piperazine); 3·60 m, 6 H (7·10 m, 2 H (CH ₂ N ¹ CH ₂ of piperazine); 3·60 m, 6 H (7) 7·10 m, 2 H (CH ₂ N ¹ CH ₂ of piperazine); 3·60 m, 6 H (7)
	1 505, 1 5 [,-N)	yrrolidone CH ₂ N ¹ Cl	01 (2·4), 2 (yrrolidone	от рирстади) — 7·30 m,	1-7.30 m,	$-7 \cdot 30 \text{ m},$ $-7 \cdot 30 \text{ m},$ $-7 \cdot 30 \text{ m},$ 11 and soli 4 (Ar-N); $1_2 - \text{N}$	1 puperate 1 - 7:30 m, 1 and soli 1 2-N); 2:60 m, 4 2:30 m, 6 2 and H-c	1 piperate 1 - 7:30 m, 11 and soli 12-N) 12-N) 2:60 m, 4 2:306 m, 6 2 and H-6 2 and H-6 2 1 514, 1	1 piperate 1 - 7:30 m, 1 - 7:30 m, 1 - 7:30 m, 2 - 60 m, 4 2 - 60 m, 4 2 - 60 m, 4 2 - 61 - 1 2 - 1 5 14, 1 2 - 1 5 1	1 - 7.30 m, 1 - 7.30 m, 1 + 30 solid $1_2 - N$; $1_2 - N$; $1_2 - N$; 2.60 m, 4, 2.60 m, 4, 2.1514, 1, 2, 1514, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	t Ar-H); 825 (CH	I-4 of 2-py m, 6 H ((1, 2 H (H-	V ₃ O ₂), 30 56 (18)	I-4 of 2-py	N ⁺ CH ₂ 0 CO); 6•60-	N ⁻ CH ₂ o CO); 6·60 3 adjacen	N ⁻ CH ₂ o CO); 6•60- 3 adjacen -H); 1 364- : 800 (CH	N ⁻ CH ₂ o CO); 6·60- 3 adjacen -H); 1 364 -H); 1 364 -(H-2 -); 1·90-2 -); 1·90-2 -); 2 H (H-2	N ^T CH ₂ o CO); 6·60. 3 adjacen -H); 1 364 -800 (CH -190-2); 1·90-2 -11, 1 492 -H), 1 492	N ^T CH ₂ o CO); $6 \cdot 60^{-1}$ 3 adjacen 3 adjacen -H); 1 364 -H); 1 364 -H), 1 492 -H), 1 492 -H), 1 492 -H), 1 492 -H), 1 492 -H), 2 H (H-2 -int); 2 -H), 2 -int); 2 -H), 2 -H), 2 -int); 2 -H), 2	N ^T CH ₂ o CO); $6\cdot60$. 3 adjacen 3 adjacen (H-1); 1 364 (H-2); 2 H (H-2) (H-1), 1 492 (H-1), 1 492 (H-1); 2 (H-2) olidone); $J = 7\cdot0$; 2 d H-5 of (H-1); 1 650 (H-1); 1 650 (H-1); 1 650 (H-1); 1 650 (H-2) o (H-2)
	adjacent actam); 2	$H (2 \times H)$ ne); 3·60); 6·90 m,	C ₁₇ H ₂₃ N 0 (10-8), 5	$H(2 \times H)$	H (CH ₂ r) (NCH ₂ C)	H (CH ₂ r (NCH ₂ C) (03, 885 (3	H (CH ₂ r (NCH ₂ C) (03, 885 (3 ⁺) acent Ar- actam); 2	H (CH ₂ r (NCH ₂ C (03, 885 (2 ⁺) ⁺) ⁺) ⁺) ⁺) ⁺) ⁺) ⁺ (ArCH ₃) ⁺ , of pip ⁺) ⁺ , 6.81 d,	H (CH ₂ r (NCH ₂ C (03, 885 (2 -) +) +) +) +) +) +) +) +2 of pip H ₂ of pip +); 6.81 d, +); 6.81 d, +); 5.81 d,	H (CH ₂ r (NCH ₂ C) (NCH ₂ C) (03, 885 (($^+$) +) ($^+$) (ArCH ₃) (ArCH ₃) (ArCH ₃) ($^+$) ($^-$) ($^+$) ($^+$) ($^+$) ($^+$) ($^+$) ($^-$) ($^+$) ($^+$) ($^+$) ($^-$) ($^+$) ($^+$) ($^-$) ($^+$) ($^-$	H (CH ₂ r (NCH ₂ C (NCH ₂ C) +) +) (+) actent Ar- actam); 2 (ArCH ₃); 6·81 d,); 6·81 d,); 6·81 d,); 6·81 d,); 6·81 d, 1; 6·81 d, 1; (ArCH ₂ , 1 (ArCH ₂ , 1 (ArCH ₂ , 1 (CH ₃ , 1) (CH ₂ , 1) (ArCH ₂) + (CH ₂) H (CH ₂) + (CH ₂
	695, 760 (5 adjacent Ar-H); 1 505 (CON of lactam); 2 825 (CH,-N)	2·10 m, 2 l of piperazi (NCH ₂ CO	301 (M ⁺ , C ₁₇ H ₂₃ N ₃ O ₂), 91 (9·6), 70 (10·8), 56 (18)	2·10 m, 2 l	9-1∠ ∪, - 4•18 s, 2 H	2-12 UIII, 4 II 4-18 s, 2 H (l 694, 788, 803 2 260 (NH ⁺)	2-12 011, 4-11 (CH ₂ CO); 6-60 – 7-3 4-18 s, 2 H (NCH ₂ CO); 6-60 – 7-3 694, 788, 803, 885 (3 adjacent and 2 260 (NH ⁺) 827 (2 adjacent Ar-H); 1 364 (Ar- (CON of lactam); 2 800 (CH ₂ -N)	9-12 0111, -7 4-18 5, 2 H 694, 788, 8 827 (2 adji 827 (2 adji (CON of 1 (CH ₂ N ⁴ C (CH ₂ N ⁴ C (NCH ₂ CC	4-12 July, 4-1 N, V,	$^{-112}$ $^{-122}$ $^{-122}$ $^{-121}$ $^{-121}$ $^{-121}$ $^{-122}$ $^{-1$	7-12 with $7-12$ with $7-12$ with $7-12$ with $7-12$ with $8-2$ H 4-18 s, 2 H 4-18 s, 2 H 4-18 s, 2 H 2-200 (NH 2-200 of 1) (CON of 1) (CON 2-25 s, 3 H CON 2-25 s, 3 H CON 2-25 s, 3 H CON 2-27 s, 3 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H 2 H
		H NMR		¹ H NMR	, -			NMR	NMR	NMR NMR	NMR NMR NMR
IR	IR	- -	I MS	1 F		CI IR					
XIV-HCI IR	XV		XVI-HCI	ПЛХ		XVII-HCI	<i>ШАХ</i>	<i>ШАХ</i> ИП-НС	<i>ХІХ</i> Х <i>И</i> ЛІІ	XIX HIIAX	<i>ТИТИХ</i> ХІХ

(Continued)		
Compound Spectrum	Spectrum	Data
IXX	IR ¹ H NMR	877 (solitary Ar-H); 1 485 (Ar); 1 655 (CON); 1 684 (CON of lactam); 2 740 (CH ₂ -N) 2·11 m, 2 H ($2 \times$ H-4 of 2-pyrrolidone); 2·20 s, 3 H (ArCH ₃ in position 4); 2·25 s, 6 H (remaining $2 \times$ ArCH ₃); 2·46 bt, 2 H (CH ₂ CO of pyrrolidone); 3·08 bm, 4 H (CH ₂ N ¹ CH ₂ of piperazine); 3·60 m, 6 H (CH ₂ N ⁴ CH ₂ of piperazine and CH ₂ N of pyrrolidone); 4·18 s, 2 H (NCH ₂ CO); 6·82 s, 2 H (ArH)
IIXX	IR ¹ H NMR	772, 838 (3 adjacent and solitary Ar-H); 1 485, 1 530, 1 560, 1 588 (Ar); 1 654 (CON); 1 696 (CON of lactam) (CON of lactam) $2\cdot12 \text{ m}$, 2 H ($2 \times \text{ H-4}$ of 2-pyrrolidone); $2\cdot40 \text{ bt}$, 2 H (CH_2CO of pyrrolidone); $3\cdot20 \text{ nm}$, 4 H ($\text{CH}_2\text{N}^1\text{CH}_2$ of piperazine); $3\cdot20 \text{ nm}$, 4 H 4.18 s, 2 H (NCH_2CO); $6\cdot85 \text{ m}$, 4 H (ArH)
IIIXX	IR ¹ H NMR	1 040, 1 072, 1 231, 1 256, 1 287, 1 702 (NCOOR); 1 470, 1 495 (Ar); 1 650 (CON); 1 692 (CON of lactam) 1:30 t, 3 H (CH ₃ , $J = 7.0$); 2-12 m, 2 H (2 × H-4 of 2-pyrrolidone); 2-45 bt, 2 H (CH ₂ CO of pyrrolidone); 3:52 bs, 10 H (4 × CH ² N of piperazine and CH ₂ N of pyrrolidone); 4-15 s, 2 H (NCH ₂ CO); 4-20, q 2 H (OCH ₂ , $J = 7.0$)

1624

1,4-Bis((2-oxo-1-pyrrolidinyl)acetyl)piperazine (XXIV)

A) A mixture of 6.85 g II (refs.^{2,20,21}), 1.62 g piperazine, and 20 ml toluene was stirred and refluxed for 7 h. Toluene was distilled off (the temperature of the mixture rose for a short time to 140°C), the residue was cooled and diluted with 20 ml benzene. There crystallized 2.5 g (37%) of crude XXIV which was purified by recrystallization from a mixture of dimethylformamide and ethanol, m.p. 293–295°C with decomposition. Mass spectrum: 336 (M⁺, C₁₆H₂₄N₄O₄). IR spectrum: 1 652 (CON of piperazide); 1 670 (CON of the lactam). For C₁₆H₂₄N₄O₄ (336·4) calculated: 57·13% C, 7·19% H, 16·66% N; found: 56·83% C, 7·53% H, 16·88% N.

Evaporation of the benzene mother liquor gave 4.4 g of oily residue which was neutralized with 1.6 g oxalic acid dihydrate in ethanol. There crystallized 2.0 g (35%) of 1-((2-oxo-1-pyrrolidinyl)-acetyl)piperazine (XXV) hydrogen oxalate, m.p. 194.5–195.5°C (ethanol-acetone). For $C_{12}H_{19}$. N₃O₆ (301.3) calculated: 47.83% C, 6.36% H, 13.95% N; found: 47.54% C, 6.55% H, 13.82% N.

B) A stirred mixture of 1.62 g piperazine and 6.85 g II (ref.²⁰) was heated for 10 h to 150 to 170°C (bath temperature). After cooling it was diluted with 20 ml benzene and 20 ml light petroleum. After standing overnight the crystalline XXIV was filtered, washed with a mixture of benzene, ethanol, and acetone, and dried in vacuo; 5.2 g (77%) of XXIV, m.p. 290-295°C, identical with the product obtained under A.

3-(4-((2-Oxo-1-pyrrolidinyl)acetyl)-1-piperazinyl)propionamide (XXVI)

A stirred solution of 5.5 g 3-(1-piperazinyl)propionamide³⁴ and 3.54 g triethylamine in 30 ml chloroform was treated at 40°C over 50 min with a solution of 5.7 g *IV* (refs^{32,33}) in 15 ml chloroform and the mixture was refluxed for 1.5 h. After cooling the mixture was filtered, the filtrate was diluted with 50 ml chloroform and washed with a saturated solution of K₂CO₃. Processing of the chloroform solution gave 6.48 g of residue which was crystallized from a mixture of 2-propanol and light petroleum; 4.0 g (38%) of *XXVI* hemihydrate, m.p. 81–83°C. Mass spectrum: 282 (M⁺, C₁₃H₂₂N₄O₃, 1.2), 165 (6.5), 238 (3), 224 (4), 211 (2.5), 197 (2), 140 (32), 127 (100), 115 (68), 98 (90), 79 (39), 65 (54), 42 (49). IR spectrum: 1 640 (CON); 1 648 (CON of the lactam); 1 670 (CONH₂); 2 680, 2 725 (CH₂–N); 3 190, 3 345, 3 475 (NH₂, H₂O). ¹H NMR spectrum (100 MHz): 2·00–2·80 m, 12 H (CH₂CH₂CO of pyrrolidone, CH₂N¹CH₂ of piperazine, and NCH₂CH₂CO); 3·52 bm, 6 H (CH₂N⁴CH₂ of piperazine and CH₂N of pyrrolidone); 4·12 s, 2 H (NCH₂CO); 6·12 bs and 7·42 bs, 1 and 1 H (CONH₂). For C₁₃H₂₂N₄O₃ + 0·5 H₂O (291·4) calculated: 53·59% C, 7·95% H, 19·23% N; found: 53·29% C, 7·65% H, 19·14% N.

Hydrogen maleate, m.p. 147–148°C (2-propanol). For $C_{17}H_{26}N_4O_7$ (398·4) calculated: 51·25% C, 6·58% H, 14·06% N; found: 51·13% C, 6·61% H, 13·86% N.

Ethyl 2-(2-Oxo-1-pyrrolidinyl)butyrate (XXXI)

A stirred solution of 43·4 g 2-pyrrolidone in 200 ml benzene was treated over 1 h with 15·0 g 80% NaH (suspension in oil) and the mixture was stirred for 2·5 h at 55-65°C. It was then treated over 1 h at the same temperature with a mixture of 102 g ethyl 2-bromobutyrate and 60 ml benzene and it was refluxed for 5 h. After cooling the mixture was filtered and the filtrate was evaporated under reduced pressure. The residue was distilled giving 83·7 g (84%) of XXXI, b.p. 100°C/47 Pa, n_D^{20} 1·4625. IR spectrum (film): 1 188, 1 284, 1 735 (RCOOR'); 1 685 (NCO). ¹H NMR spectrum (100 MHz): 0·91 t, 3 H (CH₃ of C-ethyl, $J = 7\cdot0$); 1·26 t, 3 H (CH₃ of O-ethyl, $J = 7\cdot0$); 1·60-2·20 m, 4 H (2 × H-4 of pyrrolidone and CH₂ of C-ethyl); 2·42 bt, 2 H (CH₂CO); 3·45 m, 2 H (CH₂N); 4·16 q, 2 H (OCH₂, $J = 7\cdot0$); 4·70 dd, 1 H (NCHCO, $J = 10\cdot0$; 5·0). For C₁₀H₁₇NO₃ (199·3) calculated: 60·27% C, 8·66% H, 7·03% N; found: 60·57% C, 8·75% H, 6·98% N.

2-(2-Oxo-1-pyrrolidinyl)butyric Acid (XXXII)

A mixture of 19.9 g XXXI and a solution of 6.5 g 85% KOH in 100 ml 96% ethanol was refluxed for 70 min. Ethanol was evaporated in vacuo, the residue was acidified with 20 ml 10m-HCl and the product was extracted with chloroform. Processing of the extract gave 15.6 g (91%) of XXXII, m.p. 156–157°C (chloroform-toluene). IR spectrum: 950, 1 200, 1 720, 2 460, 2 530, 2 570, 2 666 (COOH); 1 631 (NCO). ¹H NMR spectrum (100 MHz): 0.82 t, 3 H (CH₃, J = 7.0); 1·50–1·80 m, 2 H (CH₂ of ethyl); 2·00 m, 2 H (2 × H-4 of 2-pyrrolidone); 2·25 bt, 2 H (CH₂CO); 3·34 bm, 2 H (CH₂N); 4·40 dd, 1 H (NCHCO, J = 10.5; 5·0). For C₈H₁₃NO₃ (171·2) calculated: 56·13% C, 7·65% H, 8·18% N; found: 56·32% C, 7·62% H, 8·29% N.

3-(4-(2-(2-Oxo-1-pyrrolidinyl)butyryl)-1-piperazinyl)propionamide (XXX)

A suspension of 6.8 g XXXII in 30 ml benzene was treated with a solution of 5.2 g SOCl₂ in 20 ml benzene and the mixture was heated for 40 min to $50-65^{\circ}$ C and refluxed for 5 min. The volatile components were evaporated completely in vacuo and the residue (7.6 g of crude XXXIII) was dissolved in 20 ml chloroform and the solution was added dropwise over 1 h at $40-42^{\circ}$ C to a stirred solution of 6.28 g 3-(1-piperazinyl)propionamide³⁴ and 4.1 g triethylamine in 35 ml chloroform. The mixture was refluxed for 3 h. After standing overnight the precipitated solid was filtered off, the filtrate was filtered with active carbon ,the filtrate was washed with a solution of 20 g K₂CO₃ in 20 ml water, dried, and evaporated; 9.6 g of crude oily XXX. It was neutralized with 3.8 g maleic acid in 25 ml 2-propanol, the warm solution of the maleate (8.74 g) was recrystallized from 80 ml ethanol giving 5.17 g (30% per the starting XXXII) of the pure XXX hydrogen maleate, m.p. 160-162.5°C (ethanol-ether). For C₁₉H₃₀N₄O₇ (426.5) calculated: 53.51% C, 7.09% H, 13.14% N; found: 53.14% C, 7.18% H, 13.03% N.

1-Benzyl-4-(2-(3-trifluoromethylphenyl)ethyl)piperazine (XXXVb)

A mixture of 30.5 g 2-(3-trifluoromethylphenyl)ethyl chloride⁴⁴ and 51.5 g 1-benzylpiperazine²⁴ was heated for 14 h to 130° C (bath temperature). After cooling th mixture was diluted with 100 ml ether and shaken with an excess of dilute hydrochloric acid. Evaporation of the organic layer recovered 5.5 g of the starting 2-(3-trifluoromethylphenyl)ethyl chloride. The aqueous layer was a suspension of the crude *XXXVb* dihydrochloride (could be isolated by filtration) in its acid solution. It was made alkaline with 20% NaOH and the base was isolated by extraction with ether. The extract was processed and the residue was distilled giving 33.5 g (80% per conversion) of *XXXVb*, b.p. 177–179°C/0·1 kPa. For characterization it was transformed to the bis(hydrogen maleate, m.p. 204.5–205.5°C (aqueous ethanol). For C₂₈H₃₁F₃N₂O₈ (580.6) calculated: 57.93% C, 5.38% H, 9.82% F, 4.83% N; found: 58.18% C, 5.13% H, 9.49% F, 4.73% N.

1-(4-Fluorobenzyl)-4-(2-(3-trifluoromethylphenyl)ethyl)piperazine (XXXVIb)

A mixture of 14.0 g 1-(4-fluorobenzyl)piperazine⁴⁵ and 15.0 g 2-(3-trifluoromethylphenyl)ethyl chloride⁴⁴ was heated for 7 h to 140°C and the mixture was processed similarly like in the preceding case. The starting chloride was partly recovered (5.6 g). The crude basic product was distilled giving 13.7 g (83% per conversion) of crude XXXVIb, b.p. about 175°C/0.13 kPa, which was transformed to the dihydrochloride, m.p. 274–278°C with decomposition (in a sealed capillary) (crystallized from ethanol–ether). For $C_{20}H_{24}Cl_2F_4N_2$ (439.3) calculated: 54.68% C, 5.51% H, 17.30% F, 6.38% H; found: 54.69% C, 5.61% H, 17.51% F, 6.46% N.

1626

Methyl 3-(2-(4-Benzyl-1-piperazinyl)ethyl)benzoate (XXXVa)

A mixture of 34·4 g XXXVb dihydrochloride and 110 g H_2SO_4 was heated for 3 h to 100°C. After cooling the mixture was treated with 80 ml methanol and refluxed for 3 h. It was poured on ice, carefully made alkaline with 20% NaOH and at the end with Na₂CO₃, the product was extracted with ether. The extract was dried, filtered, and slightly acidified with HCl in ether; 27·6 g (83%) of XXXVa dihydrochloride, m.p. 229–233°C (methanol). For $C_{21}H_{28}Cl_2N_2O_2$ (411·4) calculated: 61·31% C, 6·86% H, 17·24% Cl, 6·81% N; found: 61·50% C, 6·82% H, 17·04% Cl, 7·00% N.

Methyl 3-(2-(4-(4-Fluorobenzyl)-1-piperazinyl)ethyl)benzoate (XXXVIa)

A mixture of 11·1 g XXXVIb dihydrochloride and 36 g H_2SO_4 was stirred and heated for 3 h to 100°C. After cooling, 27 ml methanol were added and the mixture was refluxed for 3 h. Similar processing like in the preceding case gave 9·2 g (85%) of XXXVIa dihydrochloride, m.p. 244 to 247°C with decomposition (methanol). UV spectrum: 263 (3·11), 270 (3·14), 275 (3·07), 282·5 (3·01). IR spectrum: 694, 752, 822, 830, 836, 861 (3 and 2 adjacent and solitary Ar-H); 1 235, 1 237, 1 243, 1 716 (ArCOOR); 1 520, 1 600, 1 609 (Ar); 2 300, 2 372 (NH⁺). For $C_{21}H_{27}Cl_2$. FN₂O₂ (429·4) calculated: 58·74% C, 6·34% H, 16·52% Cl, 4·43% F, 6·52% N; found: 58·52% C, 6·24% H, 16·66% Cl, 4·53% F, 6·57% N.

2-(3-Trifluoromethylphenyl)butanol (XXXVII)

Grignard reagent was prepared from 67.7 g 1-bromo-3-(trifluoromethyl)benzene and 7.8 g Mg in 150 ml tetrahydrofuran with the help of a grain of iodine. The solution of the reagent was refluxed for 1 h, cooled to 0°C, and treated under stirring with a solution of 43.3 g 1,2-epoxybutane in 100 ml benzene, added dropwise at $0-5^{\circ}$ C. It was stirred for 1 h at the temperature indicated and was allowed to stand overnight at room temperature. It was refluxed for 1 h and after cooling poured into 200 ml ice-cold 10% H₂SO₄. The organic layer was separated, dried, and evaporated. The residue was distilled giving 35.3 g (53%) of the crude product boiling at $125-130^{\circ}$ C/4 kPa. A sample for analysis was redistilled, b.p. 110° C/2 kPa. The product is contaminated by the position isomer (¹H NMR spectrum). For C₁₁H₁₃F₃O (218.2) calculated: 60.54% C, 6.00% H, 26.12% F; found: 60.73% C, 6.06% H, 25.97% F.

1-Benzyl-4-(2-(3-trifluoromethylphenyl)butyl)piperazine (XXXIX)

A stirred solution of $35 \cdot 2$ g crude XXXVII and 16 g pyridine in 40 ml dichloromethane was treated at $-5-0^{\circ}$ C with $23 \cdot 7$ g SOCl₂, added dropwise. The mixture was allowed to stand for 48 h at room temperature, washed with water, dried (CaCl₂), and distilled; 19.8 g of inhomogeneous XXXVIII, b.p. $96-100^{\circ}$ C/1.6 kPa. It was heated with 30 g 1-benzylpiperazine²⁴ to 150° C for 6 h. After cooling the mixture was diluted with 200 ml ether, the precipitated solid was filtered off and the filtrate was treated with HCl in ether. The precipitated mixture of hydrochlorides was filtered and fractionally crystallized from mixture of ethanol and ether. The homogeneous product obtained melted at $194-196^{\circ}$ C ($234-237^{\circ}$ C in a sealed capillary) and was identified as XXXIX dihydrochloride. For $C_{22}H_{29}Cl_2F_3N_2$ ($449\cdot4$) calculated: $58\cdot80\%$ C, $6\cdot50\%$ H, $15\cdot78\%$ Cl, $12\cdot68\%$ F, $6\cdot23\%$ N; found: $58\cdot53\%$ C, $6\cdot52\%$ H, $15\cdot81\%$ Cl, $12\cdot45\%$ F, $6\cdot52\%$ N.

Decomposition of a sample of this dihydrochloride with NH_4OH and extraction with dichloromethane gave the homogeneous oily XXXIX which was used for recording the ¹H NMR spectrum: 0.80 bt, 3 H (CH₃); 1.10 m, 2 H (CH₂ of ethyl); 1.80 m, 2 H (CH₂N⁴); 2.50 s, 8 H (4 × CH₂N of piperazine); 3.30 dd, 1 H (ArCH); 3.42 s, 2 H (ArCH₂N); 7.21 s, 5 H (C₆H₅); 7.40 m, 4 H (remaining 4 ArH).

The authors wish to thank their colleagues at the Research Institute for Pharmacy and Biochemistry for their contributions to the study presented: Drs I. Koruna and J. Schlnger (mass spectra); Dr E. Svátek and Mrs A. Hrádková (UV and IR spectra); Mrs M. Vlková and Mrs L. Machová (help with the synthesis); Mrs J. Komancová, Mrs V. Šmídová, Mr M. Čech, and Mrs J. Kropáčová (elemental analyses); Drs M. Bartošová and S. Wildt (pharmacological screening).

REFERENCES

- 1. Strubbe J., Cyprisiak E.: Ind. Chim. Belge 32, Spec. No. Pt. III, 212 (1967); Chem. Abstr. 70, 68042 (1969).
- 2. Morren H. (UCB): Brit. 1,039,113; Chem. Abstr. 65, 12180 (1966).
- 3. Giurgea C.: Actual. Pharmacol. 25, 115 (1972).
- Giurgea C. in: Neuro-Psychopharmacology (P. Deniker, C. Radouco-Thomas, A. Villeneuve, D. Baronet-Lacroix and F. Garcin, Eds), Proc. 10th Congr. Coll. Int. Neuro-Psychopharmacol., Quebec, July 1976, Vol. 1, p. 67. Pergamon Press, Oxford 1978.
- Giurgea C. in: Proc. 5th Int. Symp. Med. Chem., Paris, July 1976, Abstr. p. 37; (J.Mathieu, Ed.), p. 195. Elsevier, Amsterdam 1977; Chem. Abstr. 87, 193370 (1977).
- 6. Anon: Med. Actual (Drugs Today) 9, 327 (1973).
- 7. Stegink A. J.: Arzneim.-Forsch. 22, 975 (1972).
- 8. Mindus P. in: Neuro-Psychopharmacology, cf. ref.⁴, Vol. 1, p. 73.
- 9. Benešová O.: Farmakoter. Zprávy 24, 335 (1978).
- 10. Vinař O.: Farmokoter. Zprávy 24, 347 (1978).
- Benešová O., Kuempel Q. (Eds): Nootropic Drugs. Proc. Symp., Jesenik Spa, January 1979; p. 1-136.
- 12. Benešová O.: Activ. Nerv. Super. 21, 203 (1979).
- 13. Nicolaus B. J. R.: Drug Dev. Res. 2, 463 (1983).
- 14. Hershenson F. M., Moos W. H.: J. Med. Chem. 29, 1125 (1986).
- 15. Protiva M., Valenta V., Krejčí I.: Czech. 199,314; Chem. Abstr. 98, 89386 (1983).
- 16. Vedrilla Veit D. (Prodes S. A.): Span. 510,759; Chem. Abstr. 99, 88230 (1983).
- 17. Vedrilla Veit D. (Prodes S. A.): Span. 511,181; Chem. Abstr. 99, 88234 (1983).
- 18. Vedrilla Veit D. (Prodes S. A.): Eur. Pat. Appl. 89,900; Chem. Abstr. 99, 88230 (1983).
- Yevich J. P., Mattson R. J. (Bristol-Myers Co.): Fr. Demande 2,567,886; Chem. Abstr. 105, 172506 (1986).
- 20. Tafel J., Wassmuth O.: Ber. Dtsch. Chem. Ges. 40, 2831 (1907).
- 21. Reppe W. et al.: Justus Liebigs Ann. Chem. 596, 158 (1955).
- 22. Sen A. B., Shanker K.: J. Prakt. Chem. [4] 30, 10 (1965).
- 23. Polívka Z., Ryska M., Holubek J., Svátek E., Metyš J., Protiva M.: Collect. Czech. Chem. Commun. 48, 2395 (1983).
- 24. Craig J. C., Young R. J.: Org. Synth., Coll. Vol. 5, 88 (1973).
- Vejdělek Z. J., Metyš J., Hradil F., Protiva M.: Collect. Czech. Chem. Commun. 40, 1204 (1975).
- 26. Pollard C. B., Wicker T. J. Jr.: J. Am. Chem. Soc. 76, 1853 (1954).
- 27. Valenta V., Vlková M., Holubek J., Svátek E., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 55, 797 (1990).
- 28. Ratouis R., Boissier J. R., Dumont C.: J. Med. Chem. 8, 106 (1965).

Potential Nootropic Agents

- 29. Morren H.: Belg. 624,723; Chem. Abstr. 61, 1877 (1964).
- 30. Bencze W., Froestl W., Wilhelm M. (Ciba-Geigy A.-G.): Eur. 236,263; Chem. Abstr. 108, 167500 (1988).
- 31. Mattson R. J., Moon S. L.: Annu. Rep. Med. Chem. 23, 29 (1988).
- 32. Mir Soler J. (Comercio de Primeras Materias S.A.): Span. 455,174; Chem. Abstr. 89, 109073 (1978).
- 33. Haskell T. H., Nicolaides E. D., Huang G. G., Hutt M. P. Jr., Woo P. W. K. (Warner--Lambert Co.): Eur. Pat. Appl. 15,773; Chem. Abstr. 94, 121516 (1981).
- Protiva M., Jílek J., Červená I., Pomykáček J., Bártl V., Dlabač A., Valchář M., Metyšová J., Holubek J., Svátek E.: Collect. Czech. Chem. Commun. 51, 2598 (1986).
- Strubbe J. H. L., Linz R. A. (UCB): Belg. 762,728; Brit. 1,309,692; Fr. 2,081,508; Ger. Offen. 2,106,418; Neth. Appl. 65 9994; Chem. Abstr. 65, 136712 (1966); 75, 140681 (1971).
- 36. Angelis L. de: Drugs Future 6, 552 (1981).
- 37. Gobert J., Geerts J. P., Bodson G. (UCB): Eur. Pat. Appl. 162,036; Chem. Abstr. 105, 18467 (1986).
- Gobert J., Geerts J. P., Bodson G. (UCB): Eur. Pat. Appl. 165,919; Chem. Abstr. 105, 97305 (1986).
- 39. Prodes S. A.: Span. 510,762; Chem. Abstr. 99, 139757 (1983).
- 40. Hansl N. R. (F. Hoffmann-La Roche and Co., AG.): U.S. 3,792,048; Brit. 1,382,606; Belg. 788,850; Chem. Abstr. 83, 27946 (1975).
- 41. Castaner J., Hillier K.: Drugs Future 4, 50 (1979); 5, 54 (1980).
- 42. Hansl N. R.: Experientia 30, 271 (1974).
- 43. Hansl N. R., Mead B. T.: Psychopharmacology 56, 249 (1978).
- Fieser L. F., Berliner E., Bondhus F. J., Chang F. C., Dauben W. G., Ettlinger M. G., Fawaz G., Fields M., Heidelberger C., Heymann H., Vaughan W. R., Wilson A. G., Wilson E., Wu M., Leffler M. T., Hamlin K. E., Matson E. J., Moore E. E., Moore M. P., Zaugg H. E.: J. Am. Chem. Soc. 70, 3197 (1948).
- 45. Bártl V., Dlabač A., Protiva M.: Collect. Czech. Chem. Commun. 45, 3182 (1980).
- 46. Krejčí I., Kupková B.: ref.¹¹, p. 57.
- 47. Dlabač A., Krejčí I., Kupková B.: Activ. Nerv. Super. 23, 218 (1981).

Translated by the author (M.P.).